

Figure 1 Gary Galo's and D.M. Shields's bass correction network, see Gary Galo, "An archival phono preamplifier", Linear Audio vol. 5, pages 77... 104

Assumptions: everything ideal, gain doesn't matter much, the zero and the pole realized by this circuit have to be very accurately put on certain desired locations by setting R_{4} and R_{5} (all other component values are fixed in Gary Galo's design).

$$
\begin{aligned}
& I_{\text {out }}=\frac{V_{\text {in }}}{R_{6}}+V_{\text {in }} \frac{R_{4}}{R_{3}+R_{4}} \cdot \frac{1}{s \frac{R_{3} R_{4}}{R_{3}+R_{4}} C_{1}+1} \cdot A \cdot \frac{1}{R_{5}} \\
& \frac{I_{\text {out }}}{V_{\text {in }}}=\frac{1}{R_{6}}+\frac{R_{4}}{R_{3}+R_{4}} \cdot \frac{1}{s \frac{R_{3} R_{4}}{R_{3}+R_{4}} C_{1}+1} \cdot A \cdot \frac{1}{R_{5}}
\end{aligned}
$$

where $A=1+R_{1} / R_{2}$.
The pole lies at $s=-\frac{1}{\frac{R_{3} R_{4}}{R_{3}+R_{4}} C_{1}}$. The second term of the expression for $I_{\text {out }} / V_{\text {in }}$ goes to infinity for s approaching this value, the first term stays finite, so the sum also goes to infinity. Hence, the first corner frequency is $F_{3}=\frac{1}{2 \pi \frac{R_{3} R_{4}}{R_{3}+R_{4}} C_{1}}$ and the first time constant $T_{3}=\frac{R_{3} R_{4}}{R_{3}+R_{4}} C_{1}$, exactly as described by Gary Galo. Rearranging this last equation results in his equation $R_{4}=\frac{R_{3} T_{3}}{R_{3} C_{1}-T_{3}}$.

When the zero is called s_{z}, by definition, at $s=s_{z}$, the transfer is zero. Hence,

$$
0=\frac{1}{R_{6}}+\frac{R_{4}}{R_{3}+R_{4}} \cdot \frac{1}{s_{\mathrm{z}} \frac{R_{3} R_{4}}{R_{3}+R_{4}} C_{1}+1} \cdot A \cdot \frac{1}{R_{5}}
$$

Multiplying everything by R_{5} and putting one term on the other side of the equal sign:

$$
\begin{aligned}
& \frac{R_{5}}{R_{6}}=-\frac{R_{4}}{R_{3}+R_{4}} \cdot \frac{1}{s_{z} \frac{R_{3} R_{4}}{R_{3}+R_{4}} C_{1}+1} \cdot A \\
& \frac{R_{5}}{R_{6}}=-\frac{R_{4} A}{S_{z} R_{3} R_{4} C_{1}+R_{3}+R_{4}}
\end{aligned}
$$

Substituting $s_{z}=-2 \pi F_{4}$ to match Galo's notation:

$$
R_{5}=\frac{R_{4} R_{6} A}{2 \pi F_{4} R_{3} R_{4} C_{1}-R_{3}-R_{4}}
$$

Dividing numerator and denominator by R_{4} and writing $R_{3} C_{1}=1 /\left(2 \pi F_{3 \text { min }}\right)$ to make it look more like Galo's equation on page 91 of the article:

$$
R_{5}=\frac{R_{6} A}{2 \pi F_{4} R_{3} C_{1}-\frac{R_{3}}{R_{4}}-1}=\frac{R_{6} A}{\frac{F_{4}}{F_{3 \text { min }}}-\frac{R_{3}}{R_{4}}-1}
$$

The numerator equals the numerator of Galo's equation, the weird factor $F_{3}+1$ in the first term of the denominator has changed into $F_{3 \text { min }}$ and there is an extra term $-R_{3} / R_{4}$.

This extra term can be expressed as a function of F_{3} and $F_{3 \text { min }}$, if so desired. Using

$$
\begin{aligned}
& R_{4}=\frac{R_{3} T_{3}}{R_{3} C_{1}-T_{3}} \\
& \frac{R_{3}}{R_{4}}=\frac{R_{3} C_{1}-T_{3}}{T_{3}}=\frac{\frac{1}{2 \pi F_{3 \text { min }}}-\frac{1}{2 \pi F_{3}}}{\frac{1}{2 \pi F_{3}}}=F_{3}\left(\frac{1}{F_{3 \text { min }}}-\frac{1}{F_{3}}\right)=\frac{F_{3}}{F_{3 \text { min }}}-1
\end{aligned}
$$

one finds

$$
R_{5}=\frac{R_{6} A}{\frac{F_{4}}{F_{3 \text { min }}}-\frac{R_{3}}{R_{4}}-1}=\frac{R_{6} A}{\frac{F_{4}}{F_{3 \text { min }}}-\frac{F_{3}}{F_{3 \text { min }}}}
$$

The term - 1 in the denominator of Galo's equation has changed into $-F_{3} / F_{3 \text { min }}$. As Galo never introduced a symbol for the "base frequency" $F_{3 \text { min }}$ but used the same symbol as for F_{3}, it is quite possible that he mixed up F_{3} and $F_{3 \text { min }}$ and thought their ratio was 1.

