MJL21193 (PNP), MJL21194 (NPN)

Silicon Power Transistors

The MJL21193 and MJL21194 utilize Perforated Emitter technology and are specifically designed for high power audio output, disk head positioners and linear applications.

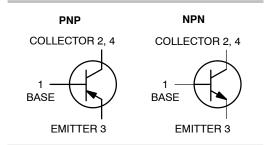
Features

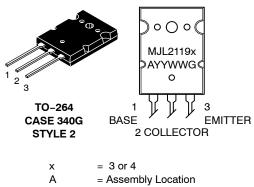
- Total Harmonic Distortion Characterized
- High DC Current Gain
- Excellent Gain Linearity
- High SOA
- These Devices are Pb-Free and are RoHS Compliant*

MAXIMUM RATINGS			
Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	250	Vdc
Collector-Base Voltage	V _{CBO}	400	Vdc
Emitter-Base Voltage	V _{EBO}	5	Vdc
Collector-Emitter Voltage - 1.5 V	V _{CEX}	400	Vdc
Collector Current – Continuous	I _C	16	Adc
Collector Current – Peak (Note 1)	I _{CM}	30	Adc
Base Current – Continuous	Ι _Β	5	Adc
Total Power Dissipation @ $T_C = 25^{\circ}C$ Derate above $25^{\circ}C$	P _D	200 1.43	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	−65 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Pulse Test: Pulse Width = $300 \ \mu$ s, Duty Cycle $\leq 2\%$

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	0.7	°C/W


ON Semiconductor®

http://onsemi.com

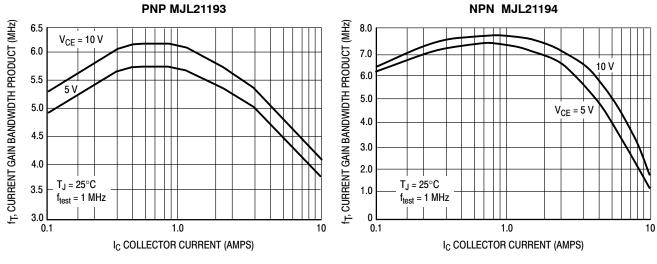
16 AMPERE COMPLEMENTARY SILICON POWER TRANSISTORS 250 VOLTS, 200 WATTS

MARKING DIAGRAM

~	- Assembly Location
YY	= Year
WW	= Work Week
G	= Pb-Free Package

ORDERING INFORMATION

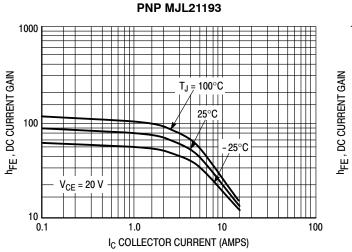
Device	Package	Shipping [†]
MJL21193G	TO-264 (Pb-Free)	25 Units / Rail
MJL21194G	TO-264 (Pb-Free)	25 Units / Rail

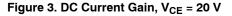

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

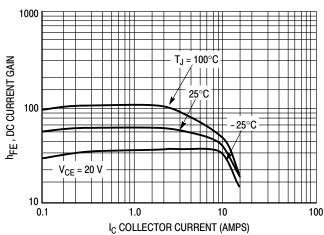
*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MJL21193 (PNP), MJL21194 (NPN)

ELECTRICAL CHARACTERISTICS (T_C = $25^{\circ}C$ unless otherwise noted)


Characteristic	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS						
Collector–Emitter Sustaining Voltage $(I_{C} = 100 \text{ mAdc}, I_{B} = 0)$		V _{CEO(sus)}	250	-	-	Vdc
Collector Cutoff Current $(V_{CE} = 200 \text{ Vdc}, I_B = 0)$		I _{CEO}	-	-	100	μAdc
Emitter Cutoff Current ($V_{CE} = 5 \text{ Vdc}, I_C = 0$)		I _{EBO}	-	-	100	μAdc
Collector Cutoff Current (V _{CE} = 250 Vdc, V _{BE(off)} = 1.5 Vdc)	ICEX	-	-	100	μAdc	
SECOND BREAKDOWN						
Second Breakdown Collector Current with Base Forward Biased (V _{CE} = 50 Vdc, t = 1 s (non-repetitive) (V _{CE} = 80 Vdc, t = 1 s (non-repetitive)		I _{S/b}	4.0 2.25	-		Adc
ON CHARACTERISTICS						
DC Current Gain ($I_C = 8 \text{ Adc}, V_{CE} = 5 \text{ Vdc}$) ($I_C = 16 \text{ Adc}, I_B = 5 \text{ Adc}$)		h _{FE}	25 8		75 -	
Base-Emitter On Voltage ($I_C = 8 \text{ Adc}, V_{CE} = 5 \text{ Vdc}$)		V _{BE(on)}	_	-	2.2	Vdc
Collector-Emitter Saturation Voltage $(I_C = 8 \text{ Adc}, I_B = 0.8 \text{ Adc})$ $(I_C = 16 \text{ Adc}, I_B = 3.2 \text{ Adc})$		V _{CE(sat)}		-	1.4 4	Vdc
DYNAMIC CHARACTERISTICS						
Total Harmonic Distortion at the Output V_{RMS} = 28.3 V, f = 1 kHz, P_{LOAD} = 100 W_{RMS}	h _{FE}	T _{HD}				%
(Matched pair h _{FE} = 50 @ 5 A/5 V)	unmatched h _{FE} matched		-	0.8 0.08	-	
Current Gain Bandwidth Product ($I_C = 1 \text{ Adc}, V_{CE} = 10 \text{ Vdc}, f_{test} = 1 \text{ MHz}$)		fT	4	_	_	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f _{test} = 1 MHz)		C _{ob}	-	-	500	pF





TYPICAL CHARACTERISTICS

NPN MJL21194

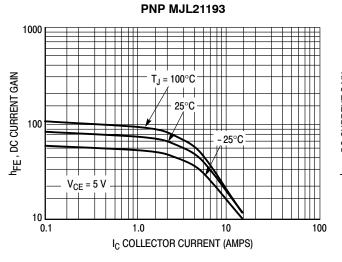
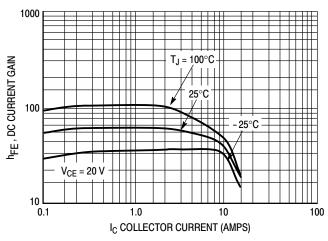
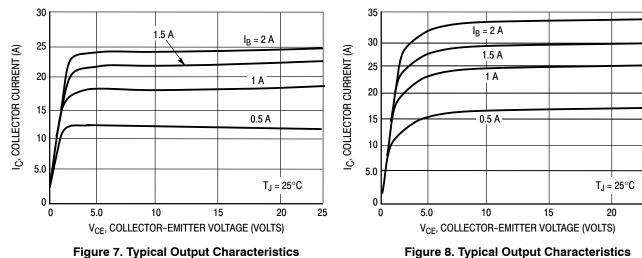
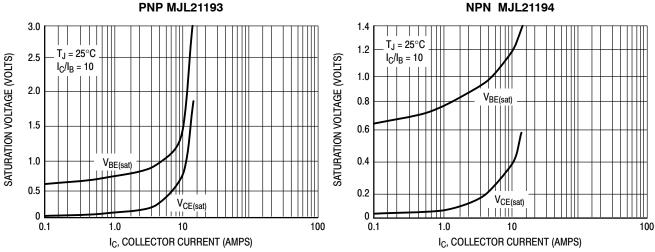



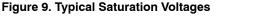
Figure 5. DC Current Gain, $V_{CE} = 5 V$

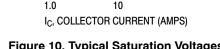


NPN MJL21194

25




PNP MJL21193


http://onsemi.com

MJL21193 (PNP), MJL21194 (NPN)

TYPICAL CHARACTERISTICS

Figure 10. Typical Saturation Voltages

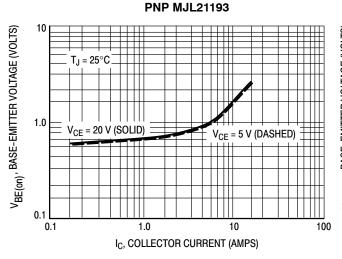


Figure 11. Typical Base-Emitter Voltage

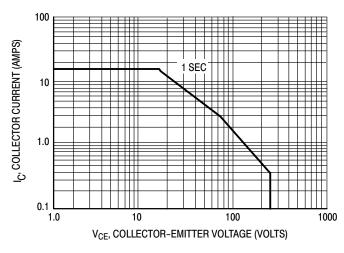


Figure 13. Active Region Safe Operating Area

NPN MJL21194

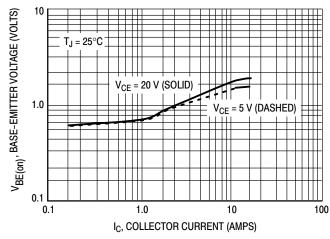


Figure 12. Typical Base–Emitter Voltage

There are two limitations on the power handling ability of a transistor; average junction temperature and secondary breakdown. Safe operating area curves indicate IC - VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 13 is based on $T_{J(pk)} = 150^{\circ}$ C; T_{C} is variable depending on conditions. At high case temperatures, thermal limitations will reduce the power than can be handled to values less than the limitations imposed by second breakdown.

MJL21193 (PNP), MJL21194 (NPN)

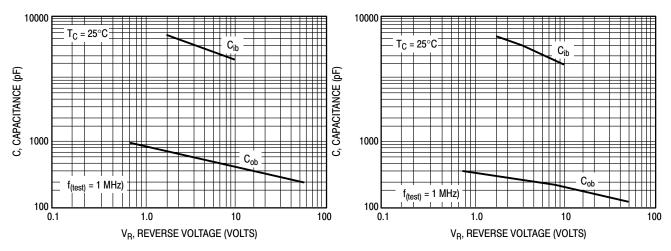
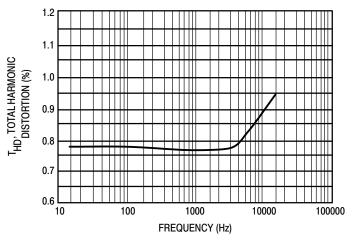



Figure 14. MJL21193 Typical Capacitance

Figure 15. MJL21194 Typical Capacitance

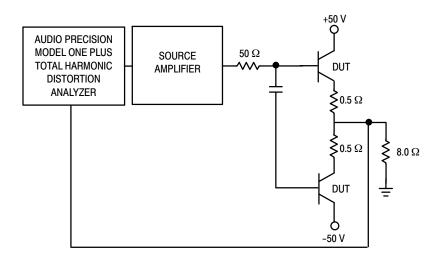
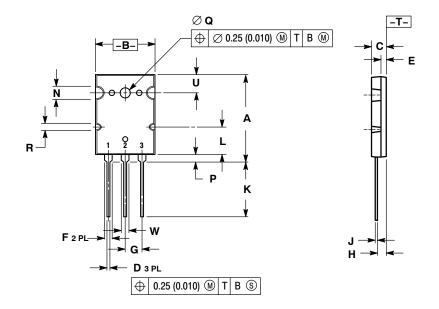



Figure 17. Total Harmonic Distortion Test Circuit

PACKAGE DIMENSIONS

TO-3BPL (TO-264) CASE 340G-02 ISSUE J

	MILLIMETERS		INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	28.0	29.0	1.102	1.142	
в	19.3	20.3	0.760	0.800	
С	4.7	5.3	0.185	0.209	
D	0.93	1.48	0.037	0.058	
E	1.9	2.1	0.075	0.083	
F	2.2	2.4	0.087	0.102	
G	5.45	BSC	0.215	0.215 BSC	
н	2.6	3.0	0.102	0.118	
J	0.43	0.78	0.017	0.031	
к	17.6	18.8	0.693	0.740	
L	11.2	11.2 REF 0.41		1 REF	
Ν	4.35 REF		0.172 REF		
Р	2.2	2.6	0.087	0.102	
Q	3.1	3.5	0.122	0.137	
R	2.25 REF		0.089 REF		
U	6.3	6.3 REF		REF	
w	2.8	3.2	0.110	0.125	

 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
CONTROLLING DIMENSION: MILLIMETER.

STYLE 2: PIN 1. BASE 2. COLLECTOR

NOTES

3. EMITTER

ON Semiconductor and a registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights of others. SCILLC products are not designed, intended, or authorized for use as components intended to support or sustain life, or for any other application in which the failure of the SCILLC product could researe application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and equilation, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and equilations are edging in jury or death massociated with such unintended or unauthorized use, pever if such claim alleges that SCILLC is an sequential end with such claim alleges that SCILLC is an sequential or indirectly, any claim of personal injury or death distributors harmless against all claims, costs, damages, and expenses, and easonable attorney fees arising out of, directly or indirectly, any claim of personal in

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: <u>MJL21193</u> <u>MJL21193G</u> <u>MJL21194</u> <u>MJL21194G</u>