6.3

Any

Low noise pentode intended for use as R.C. coupled A.F. voltage amplifier, particularly in the early stages of high-gain audio amplifiers, microphone pre-amplifiers and magnetic tape recorders.

HEATER

Suitable for series or parallel operation, a.c. or d.c.

V_h	6.3
ln.	200

MOUNTING POSITION

				•
ired	without	external	screen)	

CAPACITANCES (Measured without external screen)

Cout	5.5	рr
Cin	4.0	рF
Ca_g1	0.025	рF
C _{g1-h}	0.0025	рF

CHARACTERISTICS

V_a	250	٧
٧,,	0	٧
V _{g3} V _{g2}	1 4 0	٧
l _a	3.0	mΑ
Ī _{g2} V _{g1}	0.6	mΑ
V _{g1}	-2.0	٧
g m	1.8	mA/V
ra	2.5	MΩ
$\mu_{g_1-g_2}$	38	

OPERATING CONDITIONS AS R.C. COUPLED A.F. AMPLIFIER

Pentode connection

V_b	Ra	l _k	R_{g_2}	$R_{\mathbf{k}}$	V_{out}	V_{out}	D_{tot}	Rg1*
(V)	$(k \Omega)$	(mA)	$(M \Omega)$	$(k \Omega)$	Vin	$(V_{r.m.s.})$	(%)	$(k \Omega)$
400	100	3.3	0.39	1.0	12 4	87	5.0	330
350	100	2.85	0.39	1.0	120	75	5.0	330
300	100	2.45	0.39	1.0	116	64	5.0	330
250	100	2.05	0.39	1.0	112	50	5.0	330
200	100	1.65	0.39	1.0	106	40	5.0	330
150	100	1.0	0.47	1.5	95	22	5.0	330
400	220	1.55	1.0	2.2	200	73	5.0	680
350	220	1.4	1.0	2.2	196	63	5.0	680
300	220	1.1	1.0	2.2	188	54	5.0	680
250	220	0.9	1.0	2.2	180	46	5.0	680
200	220	0.75	1.0	2.2	170	36	5.0	680
150	220	0.55	1.0	2.7	150	24.5	5.0	680

^{*}Grid resistor of following valve.

VOLTAGE AMPLIFYING PENTODE

Low noise pentode intended for use as R.C. coupled A.F. voltage amplifier, particularly in the early stages of high-gain audio amplifiers, microphone pre-amplifiers and magnetic tape recorders.

Triode connection (g₂ to a; g₃ to k)

V_{b}	R_a	l _a	R_k	V_{out}	V_{out} *	$D_{tot}*$	R_{g_1} †
(V)	(k Ω)	(mA)	$(k \Omega)$	V_{in}	$(V_{r.m.s.})$	(%)	(k Ω)
400	47	3.7	1.2	24.5	64	4.5	150
350	47	3.2	1.2	24.5	53	4.0	150
300	4 7	2.7	1.2	24	43	3.8	150
250	47	2.3	1.2	23.5	32	3.5	150
2.00	47	1.85	1.2	23.5	22	3.1	150
400	100	2.0	2.2	28.5	73	4.0	330
350	100	1.7	2.2	28.5	62	4.0	330
300	100	1.5	2.2	28.5	50	3.8	330
250	100	1.25	2.2	28	39	3.7	330
200	100	1.0	2.2	27.5	27.5	3.3	330
400	220	1.05	3.9	32	74	3.8	680
350	220	0.9	3.9	31.5	62	3.7	680
300	220	8.0	3.9	31	51	3.7	680
250	220	0.65	3.9	30.5	39	3.5	680
200	220	0.5	3.9	30.5	28	3.1	680

^{*}Output voltage and distortion at the start of positive grid current. At lower output voltages the distortion is approximately proportional to the voltage.

LIMITING VALUES

$V_{a(b)}$ max.	550	٧
V _a max.	300	٧
p _a max.	1.0	W
$V_{g_{2}(b)}$ max.	550	٧
V_{g_2} max.	200	٧
p _{g2} max.	0.2	W
lk max.	6.0	mΑ
V_{g_1} max. $(I_{g_1} = +0.3 \mu A)$	-1.3	٧
$R_{g_{1-k}}$ max. $(p_{s}>0.2 \text{ W})$	3.0	$M\Omega$
$R_{g_{1}=k}$ max. (p_a <0.2 W)	10	$M\Omega$
V_{h-k} max. (cathode positive)	150	٧
V_{h-k} max. (cathode negative)	100	٧
*R _{h-k} max.	20	$\mathbf{k}\Omega$

^{*}When used as a phase inverter immediately preceding the output stage, R_{h-k} max. may be 120 k $\Omega.$

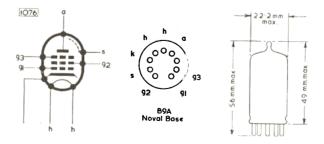
[†]Grid resistor of the following valve.

EF86

Low noise pentode intended for use as R.C. coupled A.F. voltage amplifier, particularly in the early stages of high-gain audio amplifiers, microphone pre-amplifiers and magnetic tape recorders.

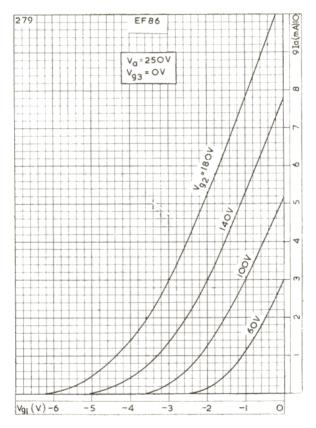
OPERATING NOTES

1. Hum.

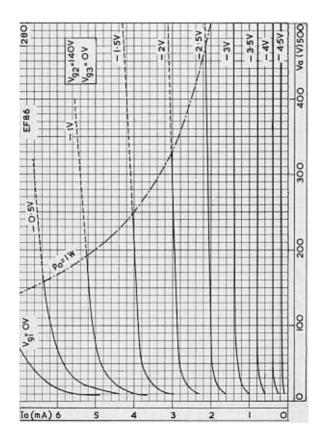

When used as a normal voltage amplifier with a line voltage of 250 V, an anode load of 100 k Ω and a grid resistor of 470 k Ω the maximum hum level of the valve alone is 5 μV , the average value being about 3 μV when operated with one side of the heater earthed. This can be further reduced by centre-tapping the heater to earth. Under these conditions the maximum hum level is 1.5 μV . The low level of hum attained with this valve can be completely masked by that due to an unsuitable valve-holder, in which excessive leakage and capacitive coupling between pins will introduce considerable hum.

2. Noise.

The low-frequency noise generated by a valve is most conveniently specified as an equivalent voltage on the control grid for a specific bandwidth. For the EF86 under normal conditions, i.e. line voltage of 250 V and an anode load of 100 k Ω , the equivalent noise voltage is approximately $2\mu V$ for the frequency range 25-10,000 c/s.

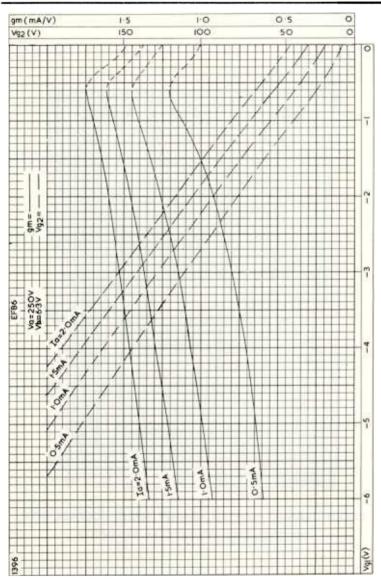

3. Microphony

Care in the design of the valve to ensure that the electrode structure and its mounting are as rigid as possible has reduced the microphony of the EF86 to a very low level. There are no appreciable internal resonances at frequencies below 1,000 c/s. At higher frequencies the effect of vibration is usually negligible on account of the damping provided by the chassis and the valve-holder. In high-gain applications such as tape recording care should be taken in siting the valve, particularly when a loudspeaker is present in the same cabinet or when a motor is mounted on the same chassis. In such cases a flexible mounting for the valve-holder or a separate weighted sub-chassis is advisable.



VOLTAGE AMPLIFYING PENTODE

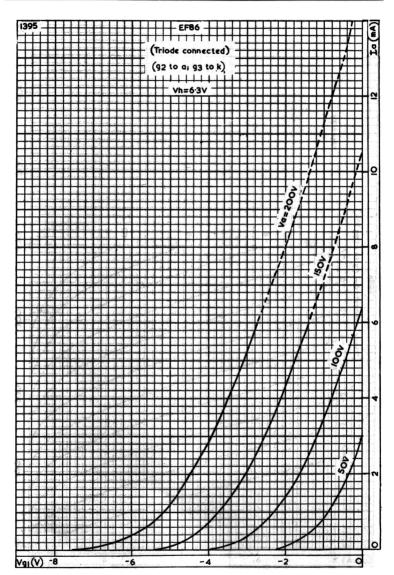
ANODE CURRENT PLOTTED AGAINST CONTROL-GRID VOLTAGE WITH SCREEN-GRID VOLTAGE AS PARAMETER


Low noise pentode intended for use as R.C. coupled A.F. voltage amplifier, particularly in the early stages of high-gain audio amplifiers, microphone pre-amplifiers and magnetic tape recorders.

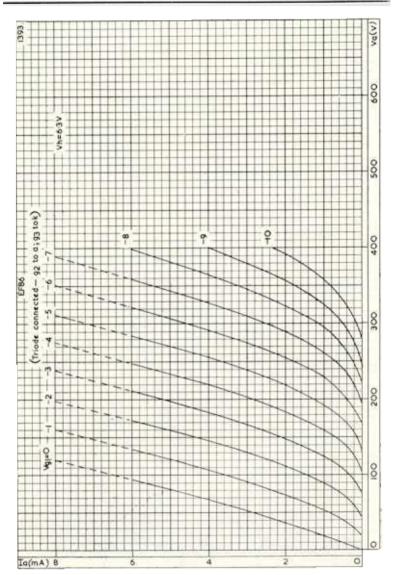
ANODE CURRENT PLOTTED AGAINST ANODE VOLTAGE WITH CONTROL-GRID VOLTAGE AS PARAMETER

VOLTAGE AMPLIFYING PENTODE

Low noise pentode intended for use as R.C. coupled A.F. voltage amplifier, particularly in the early stages of high-gain audio amplifiers, microphone pre-amplifiers and magnetic tape recorders.

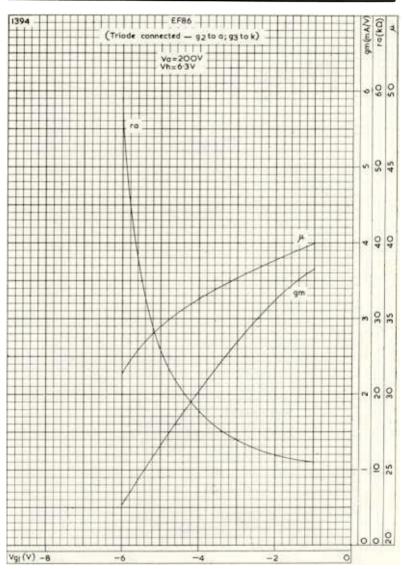

MUTUAL CONDUCTANCE AGAINST CONTROL-GRID

AND SCREEN-GRID VOLTAGE PLOTTED VOLTAGE WITH ANODE CURRENT AS PARAMETER

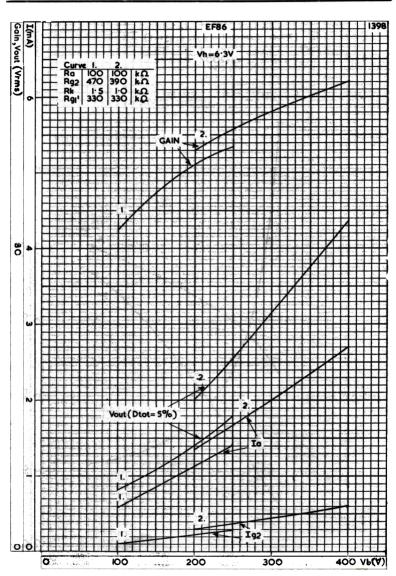

EF86

Low noise pentode intended for use as R.C. coupled A.F. voltage amplifier, particularly in the early stages of high-gain audio amplifiers, microphone pre-amplifiers and magnetic tape recorders.

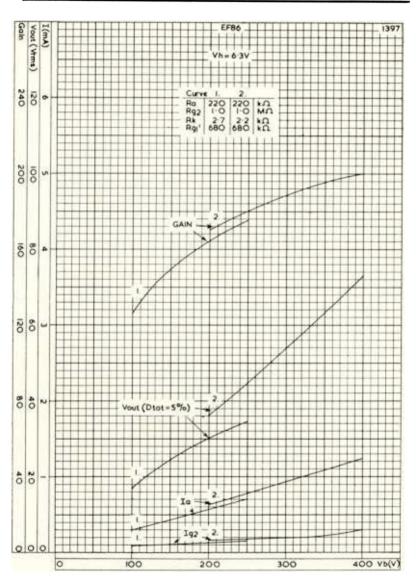
ANODE CURRENT PLOTTED AGAINST GRID VOLTAGE WITH ANODE VOLTAGE AS PARAMETER, WHEN CONNECTED AS A TRIODE


VOLTAGE AMPLIFYING PENTODE

ANODE CURRENT PLOTTED AGAINST ANODE VOLTAGE WITH GRID VOLTAGE AS PARAMETER, WHEN CONNECTED AS A TRIODE


EF86

Low noise pentode intended for use as R.C. coupled A.F. voltage amplifier, particularly in the early stages of high-gain audio amplifiers, microphone pre-amplifiers and magnetic tape recorders.


MUTUAL CONDUCTANCE, AMPLIFICATION FACTOR AND ANODE IMPEDANCE PLOTTED AGAINST GRID VOLTAGE, WHEN CONNECTED AS A TRIODE

VOLTAGE AMPLIFYING PENTODE Low noise bentode intended for use as R.C. coubled A.F.

PERFORMANCE OF EF86 AS PENTODE CONNECTED R.C. COUPLED AMPLIFIER PLOTTED AGAINST LINE VOLTAGE, FOR $R_{\rm B}{=}100~k\,\Omega$

PERFORMANCE OF EF86 AS PENTODE CONNECTED R.C. COUPLED AMPLIFIER PLOTTED AGAINST LINE VOLTAGE, FOR $R_u\!=\!220~k~\Omega.$