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SUMMARY

A lumped-constant equivalent of a transmission line can be obtained
in general in the form of a symmetrical lattice, in which the series and
lattice arms are inverse and approximate respectively to the short-
circuit and open-circuit impedances of half the line. One such set of
approximations can be derived from the infinite ladder networks
(Cauer’s canonical form) equivalent to these impedances,

These approximations produce all-pass constant-impedance net-
works (dissipation being neglected) in which the delay is maximally
flat in the sense that the first 2m — 1 derivatives of the delay with
respect to frequency are zero at the origin; m is an integer expressing
the order of the approximation.

LIST OF SYMBOLS

m = Order of approximation.
R = Impedance of line or network, ohms.
= Angular frequency, radians/sec.
Half delay of line or network, sec.
= wT.
= Normalized reactance.
= Phase-shift, radians.
Ay, » = Numerical coefficient.
R,,,, = Lommel polynomial.
= Gamma function.
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(1) INTRODUCTION

A delay line is a system for which the output is a replica of
the input in shape, but is delayed in time by some specified
amount. Such characteristics can, strictly speaking, be obtained
only from a transmission line, i.e. a system with distributed
constants. For many practical purposes, however, a more
compact and sufficiently good unit can be made in the form of
a delay network, or artificial line, in which the components are
lumped constants. One of the limitations of such a network is
that its frequency characteristics can approximate to those of
a true delay line only over a finite band of frequencies. The
particular band chosen depends on the practical application,
but a widely used band is that extending from zero up to some
specified frequency, and it is this band which is here dealt with.
The problem, then, is to design a network in which the loss is
zero and the phase-shift proportional to frequency, over this
band.

There have been two distinct approaches to this problem.
The first leads to a low-pass filter in the form of a ladder net-
work, the pass band of the filter corresponding, more or less,
to the specified frequency band. In the second, that with which
we are concerned, the network is designed as a single lattice,
although it may be broken up into simpler lattices or converted
into unbalanced networks for construction.

(2) GENERAL
The problem of finding a lattice whose characteristics approxi-
mate to those of a transmission line has been discussed by
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Guillemin!; he shows that an exact equivalent of a dissipation-
less line of impedance R and delay 2T has series arms and lattice
arms whose reactances are R tan T and — R cot wT respec-
tively.* Networks which have these reactance functions can be
determined by the methods of Foster and Cauer; the resultant
networks for tan wT are shown in Fig. 1. Since — R cot wT is
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Fig.'lt——_Netvyorks‘ equivalent to short-circuit impedance of trans-
mission line: impedance, R; delay, T; reactance, R tan T,

the inverse of R tan wT with respect to R, it may be represented
by networks obtained by reciprocation in the usual way.

These networks are infinite in extent; the approximately
equivalent delay network must have a finite number of com-
ponents. If RX is the reactance of the series arm of a sym-
metrical lattice, it will, in general, be possible to find the inverse
network, of reactance — R/X, to form the lattice arms. The
characteristics of such a lattice are:

(a) Impedance: R
(b) Insertion characteristics (between terminations R):

loss: Z€ro
phase-shift: B=2arctan X
dB 2 ax
1 =
envelope delay o T

_* The total delay of such a lattice can be split into two equal parts; one associated
with the series arm and one with the lattice arm. It is thus more convenient to use
half the total delay as the unit.
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For the delay network, X must be chosen so that the delay is
reasonably constant from zero to the specified upper frequency.
Delay can be specified as phase delay Bfw or envelope delay
dBldw; for the present analysis, envelope delay is more
convenient.

Previous methods!>2 of choosing X have used the fact that X
can be specified in terms of its zeros and poles, these being
chosen to be identical with some of the zeros and poles of
tan wT, which occur at

- (zeros:n=20,2,4,...
w = nmf ipoles:n= 1,3,5,...

If only those poles and zeros within the required band are
chosen, the resultant delay oscillates about its wanted value,
the oscillations increasing in amplitude towards the edge of the
band. These oscillations may be removed by means of addi-
tional poles and zeros outside the band, not coinciding with
those of tan w7, but methods of choosing them depend, to
some extent, on trial and error. .

It will ndw be shown that the network of Fig. 1(c) can be
used to form a series of delay networks in which the delay
characteristics are of the type known as “maximally flat.”” Tt
is immaterial whether envelope or phase delay is used: if one
is maximally flat, so is the other. The delay of any physical
network may be expressed as a Maclaurin series:

Delay = To(l + ayw? + aw* +...)

where Ty, is the zero-frequency delay and the a’s are constants.
To achieve maximal flatness with » available design parameters,
these must be chosen so that

a2=a4=...=02,=0

Another way of expressing this is to say that the first 2r+1
derivatives of the delay with respect to frequency are zero at
the origin. The greater r is, the greater will be the range over
which the delay is reasonably constant.

(3) MAXIMALLY FLAT DELAY NETWORKS

Network (c) of Fig. 1 may be approximated by breaking the
network off after as many components as desired; let the number
of components retained be m. If the last component retained
is a capacitor, the remainder of the network is replaced by a
short-circuit; if an inductor, an open-circuit is used. The first
three such approximations are shown in Fig. 2(@); Fig. 2(b)
gives the corresponding lattices, the series arms of which are
the reactances of (a); each lattice arm is the inverse with respect
to R of the appropriate series arm. These lattices are thus
constant-impedance all-pass networks of the type discussed in
Section 2; their phase characteristics depend on the reactance
RX,, of the series arm. Expressions for X, for m up to 6 are
given in Table 1; in this Table and subsequently x = wT.

The Table may be extended by recurrence formulae: if N,, and
D,, are the numerator and denominator of the mth order fraction
then

N,,=@m—1)N,_{ — N, _,x2
D,=Q@m-—1)D,,_,— D, _,x2

the initial values being
No==0,N,=x;Dy=1,D; = 1.

Jt is of interest to determine the critical frequencies (zeros
and poles) of these reactances and to compare them with the
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Fig. 2.—(a) Successive approximations to network (c) of Fig. 1.
(b) Lattices using networks of (a).

Table 1

Order of
approximation
m

Normalized reactance

i
3x
2 \ 3 — x2
3 x(15 — x2)
| 15 =6x2
s ‘ x(105 — 10x2)
105 — 45x2 4 x4
s x(945 — 105x2 + x4)
945 — 420x2 4 15x2
6 x(10 395 —-1 260x2 + 21x4)

10 395 — 4 725x2 4 210x4 — x6

critical frequencies of tan x. The results are shown in Table 2,
in which each entry is the ratio of the critical frequency of X,
to the corresponding critical frequency of tan x.

The first critical frequency, zero, is the same for tan x and all
the approximations, but for the others the critical frequencies
of the approximations are higher; for the lower critical fre-
quencies of higher order the difference is negligible. The situa-
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Table 2

Order Corresponding critical frequencies of tan x
m 0 /2 T 3n/2 27 /2 n
1 1-00 o0 _— — — — _
2 1-:00 | 1-10 o] — — — —
3 1-00 | 1-01 1-23 e o] — — —
4 1-00 [ 1-00 1-03 1-38 0 —_ —_
5 1-00 1-00 1-00 1-07 1-55 o) —
6 1-00 1:00 1-00 1-02 1-13 1-82 o0

tion is thus rather similar to that resulting from existing methods:
for the 6th order, for example, there are three coincident critical
frequencies, corresponding roughly to the band within which the
delay is constant, and three external non-coincident frequencies.
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The numerator is equal to the denominator with the last term
omitted.

For all orders of approximation the envelope delay equals 2T
multiplied by a fraction which is a function of x; the zero-
frequency value of this fraction is unity and as x (= wT) increases,
the value of this fraction drops monotonically to zero, since
numerator and denominator are always positive and the
denominator always exceeds the numerator by x2»,

The fact that the coefficients of x0 to x2m—2 are equal in
numerator and denominator means that the delay has maximal
flatness as defined in Section 2; the constant » of that Section is
equal to m — 1. In effect, of the m design parameters available,
one is used to get the correct delay and the remainder are used
to give maximal fitness.

Curves showing the relative envelope delay for various values
of m are given in Fig. 3; the corresponding curves for phase
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Fig. 3.—Envelope delay of lattice networks.

The envelope delay of these lattices is given by

2 dx,
1+ X2 do

Values of this expression, corresponding to the values of X,
in}Table 1, are given in Table 3, as far as m = 4. These ex-

Table 3
Ol;;ler Ex?velope delay
1
1 T x22T
9 4 3x2
2 5T 32 A
3 225 + 45x2 + 6x4 oT
225 4 45x2 + 6x4 + x6
4 11025 + 1 575x2 + 135x4 + 10x6 T
11025 + 1 575x2 + 135x4 4+ 10x6 + x8

pressions may be derived from recurrence formulae; if A, ,is

the coefficient of x2” in the denominator of the mth order fraction,
then

Am, n = (2mfn — 1)Am—l, n—1
Am, 0= (2m -_ ])ZAm—l,O
with the starting point

n#0

AO,O = l.

(1) GuLLEMIN, E. A.:

delay are similar in shape but do not fall off quite so rapidly.
For a given value of delay (= 27) and upper frequency limit, the
corresponding value of x (= w7’ can be calculated; the curves
will then show the value of m required to maintain the delay
constant up to this limit.
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(5) APPENDIX

The proofs of the properties set out in the body of the paper
are given here. They depend on various theorems on Lommel
polynomials, which are discussed by Watson3; the numbers in
square brackets refer to paragraphs in his book.

Network (c) of Fig. 1 is associated with the continued-fraction
expansion

1 1 1

tanx=”x_3/x_51x_...(2m_1)/x_...

and the successive approximations shown in Fig. 2 are R times
the successive convergents of this fraction. The mth convergent
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may be expressed as a ratio of Lommel polynomials [9.65]; the
reactances X,, of Table 1 are given by

R q3(x)
X =_m 1,%
m Rm,i(x)

where R, ,(x) is a Lommel polynomial defined by [9.61]

(= ym — W)IT@ + m — myam—2n
nl(m — 2n)!T@ + n)xm=12»

Rm, v(x) =
n=0
Since all polynomials here have x as argument, the x will be
omitted subsequently. The Lommel polynomials, it will be
seen, are polynomials in 1fx, and the expressions of Table 1
have been converted to ratios of polynomials in x by multiplying
above and below by xm.
From the general recurrence formula [9.63]

Ryt 4 Ry, v = [20 4+ m)[x]R,p,
it can be deduced that
Rm,'} = [(2”1 - 1)/x]Rm—l,i' - Rm—Z,f
Ry—1,3=[C@m— DIX]R, 5 ;— Ry,_33
from which the recurrence formulae associated: with Table 1
are derived.
The envelope delay obtained by using the reactance X,, in a

lattice is .
2 dx

m

_4dx X,
1+ X2 do  “do1+ X2
where the prime denotes differentiation with respect to x. The

factor 2dx/dw is the factor 2T of Table 3; X,/(1 + X2) is the
ratio of polynomials in x. In terms of Lommel polynomials,

ani — Rm,‘}R;n~l,;zl — R:n,iRm—l,%
1+ X2 Ry 12+ R2 4
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By means of the general relations [9.63]
R;n,v = [(m + Z)IX]Rm,V + Rm+l,v—1 - Rm+l,;
R;n,v = [(2V + m)lx]Rm,v - -Rm——l,v+l - Rm+l,v
the numerator of this fraction can be expressed as
Rm,i{[(m + l)lx]Rm—l.i + Rm,'} - Rm,‘}}

— Ry {[(m + DIX]R, y—R,_ 2+ —
= R%L‘} + ern—l,i - (Rm,‘}Rm,% -
=RLy+RE 13— 1

since

Rm-[»l,}}
Rm—l,§R1n+l,i)

Rm,va, v+l ™ Rln+l,vR/n—1,v+] =1 [9'64]

Hence, using
RZ 3+ RL_1,a=(—)"Ryy 3, [9.62]
it can be deduced that
)(n’z —_ ( — )mRZm,i-—m — 1
1+ Xr% ( - )mR2n1,§~m

from which the expressions of Table 3 may be derived; multipli-
cation above and below by x27 is necessary to give polynomials
in x.

From the general formula for R, , quoted earlier it may be
shown that

@2m — m)'@m — 2n)! 1
2m=201[(m — n)! 2 X221

(~ )mRZm,k—m =
n=0

from which the recurrence formulae associated with Table 3
may be deduced.




